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Introduction

We have been interested in realizing uncommon spin-
configurations of 3d ions with the help of suitably designed
ligands.1-4 The ion of specific concern here, manganese(III),
is generally high-spin (s) 2; 3d4) but for a few exceptions.2,5,6

In particular,all membersin the large family of complexes
incorporating MnIII-O(carboxylate) binding are high-spin.7

Herein we describe the first group of carboxyl-coordinated
low-spin manganese(III) complexes.

Results and Discussion

Synthesis and Characterization. The three ligands used
are of the general type H2ArL, 1. The 1:2 reaction of Mn-

(MeCO2)2‚4H2O with H2ArL in methanol containing Et4NCl
furnished dark-colored Et4N[MnIII (ArL)2] in excellent yields.
The bivalent complex [MnII(ArL)2]2- is first formed in solution

and is then oxidized by aerial oxygen (Vide infra). Selected
characterization data of the complexes are given in Table 1.
These are low-spin, behave as 1:1 electrolytes (Λ ) 70-90
Ω-1 cm2 M-1 in dimethylformamide), and display moderately
intense charge transfer absorptions in the visible region.
Crystal and Molecular Structure. The X-ray structure of

Et4N[Mn(PhL)2] has been determined. A view of the complex
is shown in Figure 1 and selected bond parameters are collected
in Table 2. The metal lies on a crystallographic 2-fold axis
and the tridentate ligand binds meridionally via oximato-N, azo-
N, and carboxyl-O atoms. The two carboxyl C-O lengths are
unequal, CsOMn being∼0.07 Å longer than CdO. Thecis-
MnN4O2 coordination sphere is severely distorted from octa-
hedral geometry. The five-membered chelate ring is satisfac-
torily planar (mean deviation 0.04 Å) and makes a dihedral angle
of 16.9° with the pendent phenyl ring. The six-membered
chelate ring is puckered (inset in Figure 1).8

The Mn-N(oxime) length 1.950(7) Å is marginally longer
than Mn-N(azo) length 1.929(6) Å, the shortest metal-ligand
bond being Mn-O(carboxylate) 1.906(7) Å. Thus all the Mn-
ligand bond lengths are<2 Å. In high-spin manganese(III)
complexes, Mn-N and Mn-O(carboxylate) bond lengths
generally exceed 2 Å.7e,9 Evidently the metal radius has
significantly contracted upon spin-pairing.10

Spin and Oxidation States: Dual Control by Coordinating
Functions. The paramagnetic moment of Et4N[Mn(ArL) 2]
(2.9 uB, Table 1) corresponds tos ) 1 (idealized3T1 ground
state). The variable temperature moment of Et4N[Mn(PhL)2]
displayed in Figure 2 reveals a steep decrease at low tempera-
ture due to mutual cancellation of orbital and spin moments.5a,11

The complexes are EPR-silent which is normal for the t2
4

configuration.2

Carboxyl coordination alone cannot lead to low-spin man-
ganese(III) because of the high spin-pairing energy of the metal12

and the weak-field nature of the carboxyl group.13 On the other
hand the azo-oxime function strongly promotes spin-pairing as
demonstrated for trischelated manganese(II)ssuch chelation,
however, fails to stabilize manganese(III).3b,c In H2ArL the
azo-oxime and carboxylate functions together produce the
desired effectssthe former promotes spin-pairing and the latter
stabilizes manganese(III) by lowering reduction potentials. We
have recently shown that the H2ArL ligands are also effective
in inducing low-spin character in iron(III).4

Metal Redox: Status of [MnII (ArL 2)]2-. Dimethylforma-
mide solutions of Et4N[Mn(ArL) 2] display a nearly reversible
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cyclic voltammetric response (Table 1) corresponding to eq 1.

Exhaustive electrolysis at-0.3 V afforded a brown solution of

[Mn(ArL) 2]2- which showed the same voltammogram (initial
scan anodic) as that of [Mn(ArL)2]- (initial scan cathodic).
Coulometric reoxidation of the brown solution at 0.1 V
quantitatively regenerated [Mn(ArL)2]-. The same result is
obtained upon exposing the reduced solution to air. This is
consistent with the lowE1/2 value (∼-0.1 V) of the couple of
eq 1. The formation of [MnIII (ArL)2]- from the reaction of
H2ArL with MnII salts in air is thus understandable.
Solutions of [Mn(ArL)2]2- can also be generated by reducing

[Mn(ArL) 2]- with hydrazine hydrate. We have not succeeded
in isolating it as solid salts but solution EPR results (X-band)
suggest the rare3 low-spin configuration (t25). The [Mn(ToL)2]2-

is representative. In dimethylformamide solution its isotropic
(298 K) spectrum consists of six hyperfine lines (giso ) 2.028,
Aiso ) 100 G). When the sample is frozen (77 K), a
well-resolved anisotropic spectrum results:g1 ) 2.038,A1 )
130 G;g2 ) 2.035,A2 ) 140 G;g3 ) 2.011, A3 E 20 G (gav
) 2.028,Aav ∼ 100 G). In contrast to this, polycrystalline
anisotropic spectra of rhombic high-spin manganese(II) com-
plexes are generally quite broad and complex withg values
spreading over a very wide region.14

Concluding Remarks. The first family of low-spin (s) 1)
carboxyl-bonded manganese(III) complexes Et4N[MnIII (ArL)2]
has been synthesized. The contraction of metal radius upon
spin-pairing is clearly revealed in Mn-N and Mn-O bond
length data. The ligand plays a dual role: it creates high ligand-
field strength via azo-oxime chelation and it stabilizes man-
ganese(III) by carboxyl coordination. The [MnIII (ArL)2]-/
[MnII(ArL)2]2- reduction potential is∼-0.1 V. The EPR
parameters of [Mn(ArL)2]2-, generated in solution, suggest low-
spin character (s ) 1/2).

Experimental Section

Physical Measurements. A Hitachi 330 spectrophotometer was
used to record UV-vis spectra. EPR spectra were studied with a Varian
E-109C spectrometer fitted with a quartz dewar, and a flat cell was
used to record solution EPR spectra in dimethylformamide solution at
298 K. Frozen glass (77 K) spectra were taken with a normal quartz
tube. Room temperature magnetic susceptibilities were measured with
Model 155 PAR vibrating sample magnetometer fitted with a Walker
Scientific L75FBAL magnet. Variable temperature (30-300 K) data
were collected with a George Associates Model 300 Lewis coil force
magnetometer. A Perkin-Elmer 240C elemental analyzer was used to
collect microanalytical data (CHN). Electrochemical measurements
were performed under nitrogen atmosphere on a PAR 370-4 electro-
chemistry system using solvents and supporting electrolyte purified/
prepared as before.1a,15 The reference electrode was saturated calomel
electrode (SCE). Solution electrical conductivities were measured with
the help of a Philips PR 9500 bridge, the solute concentration being
∼10-3 M.
Synthesis of Ligands and Complexes.The ligands were synthe-

sized as previously described.4 The complexes were synthesized by a
general method. Details for one representative case are given below.
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Table 1. Electrochemical Data,a-f Electronic Spectral Data,a,g and Magnetic Momentsh at 298 K

compounds E1/2,c V (∆Ep,dmV); ne,f UV-vis data: λmax, nm (ε, M-1 cm-1) µeff, µB

Et4N[Mn(PhL)2] -0.065 (70); 1.01 840 (2560), 675g (2390), 550g (4620), 480 (5680) 2.83
Et4N[Mn(NpL)2] -0.090 (100); 0.98 850 (2100), 675g (1950), 550g (3810), 480 (4760) 2.92
Et4N[Mn(ToL)2] -0.125 (90); 1.02 850 (2390), 675g (2450), 550g (4450), 480 (5830) 2.90

a In dimethylformamide.b At a platinum disk electrode; supporting electrolyte tetraethylammonium perchlorate (TEAP, 0.1 M); scan rate 50 mV
s-1; reference electrode SCE; solute concentration∼10-3 M. c E1/2 is calculated as the average of anodic (Epa) and cathodic (Epc) peak potentials.
d ∆Ep ) Epa - Epc.

e n) Q/Q′, whereQ is the observed coulomb count andQ′ is the calculated count for 1e transfer.f Constant potential electrolysis
performed at 200 mV belowEpc for reduction and 200 mV aboveEpa for oxidation.

g Shoulder.h In solid state.

Figure 1. Perspective view and atom-labeling scheme for the anion
of Et4N[Mn(PhL)2] with atoms other than carbon represented by their
30% probability ellipsoids. The MnC3NO chelate ring is shown in the
inset.

Table 2. Selected Bond Distances (Å) and Angles (deg) and Their
Estimated Standard Deviations for Et4N[Mn(PhL)2]

Distances
Mn-N(1) 1.929(6) N(2)-C(8) 1.338(11)
Mn-N(3) 1.950(7) N(3)-C(8) 1.365(11)
Mn-O(3) 1.906(7) O(1)-N(3) 1.265(10)
N(1)-N(2) 1.302(10) O(2)-C(1) 1.218(11)
N(1)-C(7) 1.410(10) O(3)-C(1) 1.290(11)

Angles
N(1)-Mn-N(1A) 173.4(5) N(3)-Mn-O(3A) 91.3(3)
N(1)-Mn-N(3) 79.1(3) O(3)-Mn-N(1) 91.7(3)
N(1)-Mn-O(3A) 92.7(3) O(3)-Mn-N(3) 168.4(3)
N(3)-Mn-N(1A) 95.9(3) O(3)-Mn-O(3A) 96.2(4)
N(3)-Mn-N(3A) 82.7(4) O(3A)-Mn-N(3A) 168.4(3)

Figure 2. Plots of the magnetic momentµeff (µB) and the magnetic
susceptibilityøM (emu/mol) against temperatureT (K) for Et4N[Mn-
(PhL)2].

[MnIII (ArL)2]
- + e- h [MnII(ArL)2]

2- (1)
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Tetraethylammonium Bis[((2-carboxylatophenyl)azo)benzaldox-
imato]manganese(III), Et4N[Mn(PhL) 2]. The complex was prepared
by adding a methanolic solution (10 mL) of H2PhL (0.11 g, 0.40 mmol)
containing Et4NCl (0.04 g, 0.25 mmol) to a solution containing
manganese(II) acetate tetrahydrate (0.05 g, 0.20 mmol). The mixture
was stirred at room temperature for 1 h. The deposited dark crystalline
solid (solution color:pink-brown) was filtered off, washed several times
with aqueous methanol (1:1), and dried in vacuo over CaCl2. Yield:
0.11 g (75%). Anal. Calcd for Et4N[Mn(PhL)2], C36H38N7O6Mn: C,
60.08; H, 5.28; N, 13.63. Found: C, 60.14; H, 5.17; N, 13.72.
Anal. Calcd for Et4N[Mn(ToL)2], C38H42N7O6Mn: C, 61.05; H,

5.62; N, 13.12. Found: C, 61.09; H, 5.54; N, 13.04. Anal. Calcd for
Et4N[Mn(NpL)2], C44H42N7O6Mn: C, 64.47; H, 5.13; N, 11.97.
Found: C, 64.41; H, 5.22; N, 11.89.
X-ray Structure Determination. A crystal of Et4N[Mn(PhL)2]

(0.40× 0.35× 0.24 mm3) grown by slow diffusion of methanol into
dimethylformamide solution was used. The unit cell parameters were
determined by the least-squares fit of 30 machine centered reflections
having 2θ values in the range 15-25°. Data were collected at 296 K
by theω-scan method over the 2θ range 3-52° on a Nicolet R3m/V
diffractometer with graphite monochromated Mo KR radiation (λ )
0.710 73 Å). The upper 2θ limit was subsequently lowered to 45°

because of the paucity of observed reflections at higher angles. Two
check reflections measured after every 98 reflections showed no
significant intensity reduction during 26.5 h of exposure to X-rays.
All data were corrected for Lorentz-polarization effects. Absorption
coefficient is small (4.39 cm-1) and no absorption correction was made.
Of 2750 unique reflections 1069 satisfyingI > 3.0σ(I) were used for
structure solution by direct methods. The Mn, O, and N atoms were
made anisotropic (data-to-parameter ratio, 7.37). Hydrogen atoms were
added at calculated positions withU ) 0.08 Å2 in the last cycle of
refinement. Significant crystal data are listed in Table 3. Computations
were carried out on a MicroVAX II computer using the SHELXTL-
PLUS program package16 and crystal structure plots were drawn using
ORTEP.17
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Table 3. Crystallographic Data for Et4N[Mn(PhL)2]

chem formula C36H38N7O6Mn T, °C 23
fw 719.7 λ, Å 0.710 73
space group (No.) Pbcn(60) ρobsd, g cm-3 1.378
a, Å 12.618(4) ρcalcd, g cm-3 1.384
b, Å 20.033(8) µ, cm-1 4.39
c, Å 13.665(8) Ra% 5.95
V, Å3 3454(3) Rw,b% 6.33
Z 4

aR ) ∑|Fo - |Fc|/∑|Fo|. bRw ) [∑w(|Fo - |Fc|)2/∑w|Fo|2]1/2; w-1

) σ2(|Fo|) + g|Fo|2; g ) 0.0001 for Et4N[Mn(PhL)2].
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