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Introduction

We have been interested in realizing uncommon spin-
configurations of 3d ions with the help of suitably designed
ligands!™* The ion of specific concern here, manganese(lll),
is generally high-sping(= 2; 3d") but for a few exceptiond>6
In particular,all membersin the large family of complexes
incorporating MH'—O(carboxylate) binding are high-spin.
Herein we describe the first group of carboxyl-coordinated
low-spin manganese(lll) complexes.

Results and Discussion

Synthesis and Characterization. The three ligands used
are of the general type #ArL, 1. The 1:2 reaction of Mn-

/ﬂ' HoArL

"\)‘\
(”0” phenyl H,PhL
Ar p-tolyl HaTol
HaATL o£-naphthyl HoNpL

1

(MeCQy)2+4H,0 with H,ArL in methanol containing BNCI
furnished dark-colored E¥[Mn"'(ArL),] in excellent yields.
The bivalent complex [MI(ArL) ]2~ is first formed in solution
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and is then oxidized by aerial oxygenide infra). Selected
characterization data of the complexes are given in Table 1.
These are low-spin, behave as 1:1 electrolytes< 70—90
Q71 cn? M~1in dimethylformamide), and display moderately
intense charge transfer absorptions in the visible region.

Crystal and Molecular Structure. The X-ray structure of
EuN[Mn(PhL);] has been determined. A view of the complex
is shown in Figure 1 and selected bond parameters are collected
in Table 2. The metal lies on a crystallographic 2-fold axis
and the tridentate ligand binds meridionally via oximatoazo-

N, and carboxyl© atoms. The two carboxyl €0 lengths are
unequal, G-OMn being~0.07 A longer than €&0. Thecis-
MnN,4O, coordination sphere is severely distorted from octa-
hedral geometry. The five-membered chelate ring is satisfac-
torily planar (mean deviation 0.04 A) and makes a dihedral angle
of 16.9 with the pendent phenyl ring. The six-membered
chelate ring is puckered (inset in Figure®l).

The Mn—N(oxime) length 1.950(7) A is marginally longer
than Mn—N(azo) length 1.929(6) A, the shortest mettigjand
bond being Mr-O(carboxylate) 1.906(7) A. Thus all the Mn
ligand bond lengths ares2 A. In high-spin manganese(lll)
complexes, MrN and Mn-O(carboxylate) bond lengths
generally exceed 2 A9 Evidently the metal radius has
significantly contracted upon spin-pairifg.

Spin and Oxidation States: Dual Control by Coordinating
Functions. The paramagnetic moment of J8{Mn(ArL) ;]

(2.9 w, Table 1) corresponds ®= 1 (idealized®T; ground
state). The variable temperature moment ofNf¥in(PhL),]
displayed in Figure 2 reveals a steep decrease at low tempera-
ture due to mutual cancellation of orbital and spin momets.

The complexes are EPR-silent which is normal for thfe t
configuration?

Carboxyl coordination alone cannot lead to low-spin man-
ganese(lll) because of the high spin-pairing energy of the Hetal
and the weak-field nature of the carboxyl grddpOn the other
hand the azo-oxime function strongly promotes spin-pairing as
demonstrated for trischelated manganese@l)ch chelation,
however, fails to stabilize manganese(M¥ In H.ArL the
azo-oxime and carboxylate functions together produce the
desired effectsthe former promotes spin-pairing and the latter
stabilizes manganese(lll) by lowering reduction potentials. We
have recently shown that the,ArL ligands are also effective
in inducing low-spin character in iron(l1p.

Metal Redox: Status of [Mn'' (ArL »)]2~. Dimethylforma-
mide solutions of EN[Mn(ArL) ;] display a nearly reversible

(8) The ligand frame (the pendent phenyl ring excluded) is nonplanar as
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chelate ring; plane B, the benzene ring; and plane C, the carboxyl
function. The dihedral angles between A and B and between B and
C are respectively 17.6 and 10.0
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Table 1. Electrochemical Dat&," Electronic Spectral Dat# and Magnetic Momenfsat 298 K

compounds E12°V (AE,Y mV); nef UV —vis data: Amax NM €, M~ cm™) Ueff, Ug
EtN[Mn(PhL),] —0.065 (70); 1.01 840 (2560), 6762390), 558 (4620), 480 (5680) 2.83
ELN[Mn(NpL)] —0.090 (100); 0.98 850 (2100), 678.950), 558 (3810), 480 (4760) 2.92
ELN[Mn(ToL);] —0.125 (90); 1.02 850 (2390), 6762450), 558 (4450), 480 (5830) 2.90

a|n dimethylformamide® At a platinum disk electrode; supporting electrolyte tetraethylammonium perchlorate (TEAP, 0.1 M); scan rate 50 mV
s™%; reference electrode SCE; solute concentratidi®—3 M. ¢ Ey, is calculated as the average of anodig,) and cathodic &) peak potentials.
4 AE, = Ep, — Ep.. *n= Q/Q', whereQ is the observed coulomb count a@tlis the calculated count for 1e transfé€onstant potential electrolysis
performed at 200 mV belou&,, for reduction and 200 mV abowug,, for oxidation.9 Shoulder." In solid state.

[Mn(ArL) 7]~ which showed the same voltammogram (initial
scan anodic) as that of [Mn(Ark])~ (initial scan cathodic).

m Coulometric reoxidation of the brown solution at 0.1 V
guantitatively regenerated [Mn(Ark]y. The same result is
obtained upon exposing the reduced solution to air. This is
consistent with the lovig;» value (~—0.1 V) of the couple of

eq 1. The formation of [MH(ArL);]~ from the reaction of
HArL with Mn" salts in air is thus understandable.

Solutions of [Mn(ArL)]2~ can also be generated by reducing
[Mn(ArL) 5]~ with hydrazine hydrate. We have not succeeded
in isolating it as solid salts but solution EPR results (X-band)
suggest the raféow-spin configuration /). The [Mn(ToL)]2~
is representative. In dimethylformamide solution its isotropic
(298 K) spectrum consists of six hyperfine lingg{= 2.028,
Aiso = 100 G). When the sample is frozen (77 K), a
well-resolved anisotropic spectrum resulg: = 2.038,A; =

Figure 1. Perspective view and atom-labeling scheme for the anion 130 G;g, = 2.035,A; = 140 G;gs = 2.011, A < 20 G (Qav

of ELN[Mn(PhL),] with atoms other than carbon represented by their — _2'028'_Aa‘/ ~ 100 G). In QomraSt tq this, polycrystalline
30% probability ellipsoids. The MnSIO chelate ring is shown inthe ~ @nisotropic spectra of rhombic high-spin manganese(ll) com-
inset. plexes are generally quite broad and complex vgthkalues

spreading over a very wide regidh.
Concluding Remarks. The first family of low-spin § = 1)
carboxyl-bonded manganese(lll) complexegNf¥in'! (ArL) ;]

Table 2. Selected Bond Distances (A) and Angles (deg) and Their
Estimated Standard Deviations for,BfMn(PhL)]

Distances has been synthesized. The contraction of metal radius upon
m:mgg 1'858% “g;g% 122283 spin-pairing is clearly revealed in MfiN and Mn-O bond
Mn—0(3) 1.906(7) O(1}N(3) 1.265(10) length data. The ligand plays a dual role: it creates high ligand-
N(1)-N(2) 1.302(10) O(2rCc(1) 1.218(11) field strength via azeoxime chelation and it stabilizes man-
N(1)—C(7) 1.410(10) O(3yC(1) 1.290(11) ganese(lll) by carboxyl coordination. The [M(ArL),]~/

Angles [Mn"(ArL);]>~ reduction potential is~—0.1 V. The EPR

N(1)-Mn—N(1A)  173.4(5) N(3>Mn—O(3A) 91.3(3) parameters of [Mn(ArL?~, generated in solution, suggest low-
N(1)-Mn—N(3) 79.1(33)  O(3FMn—N(1) 91.7(3) spin characterg(= Y5).

N(1)-Mn—O(3A)  92.7(3)  O(3XMn—N(3) 168.4(3)

N(3)-Mn—N(1A)  95.9(3) O(3)-Mn—0O(3A) 96.2(4) Experimental Section

N(3)—Mn—N(3A) 82.7(4) O(3ArMn—N(3A) 168.4(3)

Physical Measurements. A Hitachi 330 spectrophotometer was
used to record UV vis spectra. EPR spectra were studied with a Varian
E-109C spectrometer fitted with a quartz dewar, and a flat cell was
used to record solution EPR spectra in dimethylformamide solution at
298 K. Frozen glass (77 K) spectra were taken with a normal quartz
tube. Room temperature magnetic susceptibilities were measured with
Model 155 PAR vibrating sample magnetometer fitted with a Walker
Scientific L75FBAL magnet. Variable temperature {3800 K) data
were collected with a George Associates Model 300 Lewis coil force
magnetometer. A Perkin-Elmer 240C elemental analyzer was used to
collect microanalytical data (CHN). Electrochemical measurements
were performed under nitrogen atmosphere on a PAR 370-4 electro-
2.4 | | 0 chemistry system using solvents and supporting electrolyte purified/

0 100 200 300 prepared as befofé!®> The reference electrode was saturated calomel

Temperature (K) electrode (SCE). Solution electrical conductivities were measured with

Figure 2. Plots of the magnetic momepty (us) and the magnetic the help of a Philips PR 9500 bridge, the solute concentration being

susceptibilityym (emu/mol) against temperatufie(K) for EtsN[Mn- ~107 M. ) ) )
(PhL)]. Synthesis of Ligands and Complexes.The ligands were synthe-

sized as previously describédThe complexes were synthesized by a
cyclic voltammetric response (Table 1) corresponding to eq 1. general method. Details for one representative case are given below.
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i - T = I 2= (14) Chakraborty, P.; Chandra, S. K.; Chakravorty]marg. Chem 1993
[Mn™(ArL),] +e [Mn"(ArL) )] 1) 32 5349,
) ) . (15) Lahiri, G. K.; Bhattacharya, S.; Ghosh, B. K.; Chakravorty|marg.
Exhaustive electrolysis at0.3 V afforded a brown solution of Chem 1987, 26, 4324.
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Table 3. Crystallographic Data for E{[Mn(PhL),] because of the paucity of observed reflections at higher angles. Two
o check reflections measured after every 98 reflections showed no
?\,Cem formula 7%&;8’\'706'\/'” ;{ AC (2).3710 73 significant intensity reduction during 26.5 h of exposure to X-rays.
space group (No.) Pbcn(60) Oobss g CNT3  1.378 All data were corrected for Lorentzgolarization effects. Absorption
a A 12.618(4) Ocalcs g CMTS 1,384 coefficient is small (4.39 crit) and no absorption correction was made.
b, 20.033(8) u, cmt 4.39 Of 2750 unique reflections 1069 satisfyihg 3.00(l) were used for
c A 13.665(8) R % 5.95 structure solution by direct methods. The Mn, O, and N atoms were
v, A3 3454(3) R.> % 6.33 made anisotropic (data-to-parameter ratio, 7.37). Hydrogen atoms were
YA 4 added at calculated positions with = 0.08 A in the last cycle of
ap— _ bR — _ 2 12+ -1 refinement. Significant crystal data are listed in Table 3. Computations
= gleol)ELFF OQ\FJ)IIZ;CHQZ:ng:Oom for[%v,gl[ﬁn(lzlﬁﬂ))z]/_zwllzoﬂ a were carried out on a MicroVAX Il computer using the SHELXTL-
PLUS program packadfeand crystal structure plots were drawn using

17
Tetraethylammonium Bis[((2-carboxylatophenyl)azo)benzaldox- ORTEP:

imatoJmanganese(lll), EtN[Mn(PhL) ;] The complex was prepared Acknowledgment. Financial supports received from the
by adding a methanolic solution (10 mL) obPhL (0.11g,0.40mmol)  pepartment of Science and Technology, New Delhi, and the
containing EINCI (0.04 g, 0.25 mmol) to a solution containing ¢l of Scientific and Industrial Research, New Delhi, are
manganese(ll) acetate tetrahydrate (0.05 g, 0.20 mmol). The mIXtureaCknOWIedged Affiliation to Jawaharlal Nehru Centre for

was stirred at room temperature for 1 h. The deposited dark crystalline L o
solid (solution color:pink-brown) was filtered off, washed several times Advanced Scientific Research, Bangalore, India, is acknowl-

with aqueous methanol (1:1), and dried in vacuo over Ga®ield: edged. We are thankful to Professor C. N. R. Rao for providing
0.11 g (75%). Anal. Calcd for B{[Mn(PhL),], CseHagN-OsMn: C, access to the Lewis coil magnetometer.
60.08; H, 5.28; N, 13.63. Found: C, 60.14; H, 5.17; N, 13.72. . . . .

Anal. Calcd for EAN[MN(ToL)2], CssHaN7OsMn: C, 61.05; H, Supporting Information Available: Tables of crystallographic data

562 N. 13.12. Found: C. 61.09: H. 5.54: N. 13.04. Anal. Calcd for (Table S1), complete atomic coordinates (Table S2), bond distances
ELN[Mn(NpL)s], C N,OMn: C, 64.47: H, 5.13; N, 11.97. (Table S3) and angles (Table S4), anisotropic thermal parameters (Table
FgurEd: (Cp6£)1.2111' QA"54‘2227. lil 11.80. S5), and hydrogen atom positional parameters (Table S6) #-Et
X-ray Structure Determination. A crystal of EtN[Mn(PhL),] [Mn(PhL),] (5 pages). Ordering information is given on any current

(0.40 x 0.35 x 0.24 mnf) grown by slow diffusion of methanol into ~ Masthead page.
dimethylformamide solution was used. The unit cell parameters were |c960485L
determined by the least-squares fit of 30 machine centered reflections
having @ values in the range ¥325°. Data were collected at 296 K - o

- (16) Sheldrick, G. M. SHELXTL-PLUS 88Structure Determination
by thew-scan method over thefzange 3-52° on a Nicolet R3m/V Software ProgramsNicolet Instrument Corp.: Madison, WI, 1988.

diffractometer with graphite monochromated Me.Kadiation ¢ = (17) Johnson, C. KORTER Report ORNL-5138; Oak Ridge National
0.71073 A). The upper@limit was subsequently lowered to %5 Laboratory: Oak Ridge, TN, 1976.




